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ABSTRACT

In this thesis we solve two-dimensional linear parabolic partial differential equations
with pure Dirichelet boundary conditions, using the bilinear covolume-upwind finite
volume method on rectangular grids to discretize the spatial variables and the Crank-
Nicholson method for the time variable. These PDEs provide a model for problems
from various fields of engineering and applied sciences, such as unsteady viscous flow
problems, the simulation of oil extraction from underground reservoirs, transport of
air and ground water pollutants and modeling of semiconductor devices. Finite vol-
ume method has the important advantage of allowing the conversion of integrations
over the control volume to integrations over its boundary based on Green’s Theo-
rem. Then, one can use quadrature rules to approximate the resulting integrals. In
order to avoid non-physical oscillations that can arise from the numerical solution
of convection-dominated problems when using the central finite volume scheme, we
generate non-standard control volumes using local Peclet’s numbers and the upwind
principle. We numerically compare the covolume-upwind finite volume method with
the central and the upwind finite volume schemes, demonstrating stability and better

convergence of the method through various examples.
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CHAPTER 1

INTRODUCTION

1.1 LITERATURE REVIEW

Linear parabolic partial differential equations arise in many applications of science
and engineering, such as transport of ground water pollutants, oil reservoir flow,
semiconductor devices modeling, meteorology. Finite difference methods (FDMs)
were first implemented to solve these problems, together with finite element methods
(FEMs) [5]. In the finite element method, the derivatives are replaced by difference
quotients which involve only function values at the grid points. The method is sim-
ply to implement, but it is not good when the equation has discontinuous coefficients
or one has to handle complex geometry in multiple dimensions. FEMs are based
on the variational formulation of the problem. Then the variational formulation is
discretized in a finite dimensional space. For a more detailed description of these
methods refer to [3] and [6].

The basic idea of finite volume methods (FVMs) is to discretize the domain in
subdomains, called control volumes or covolumes, which form a partition of the origi-
nal domain. Then, one integrates the whole equation over each covolume and applies
the divergence theorem to transform these integrals to integrals over the boundary
of the covolumes. FEMs and FVMs share some good properties: flexibility with
respect to the geometry of the domain, simple discretization of the boundary condi-
tions, possibility of using unstructured grids. FVMs were extensively used in many

engineering fields, such as fluid mechanics and heat transfer. Finite volume methods
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for convection-diffusion problem were introduced in the sixties by Samarkii [20] and
developed by Patankar [18] in the eighties. A posteriori error estimates for the non-
stationary convection-diffusion-reaction problem were found by Verfurth in [26] and
by Nochetto, Akrivis and Makridakis in [2]. A modification of finite volume schemes
that is second-order accurate in time and fourth-order in space for the one-dimensional
problem was presented in [15]. New schemes for solving the convection-diffusion equa-
tion, including adaptive schemes, are introduced in [1], [19], [25], [23], [24].

In several cases, the diffusive term of the convection-diffusion-reaction equation
is smaller that the convective one. This kind of problems are called convection-
dominated problems. When using classical methods to find the numerical solution
of convection-dominated equations, non-physical oscillations may arise. To overcome
this problem, several numerical methods have been introduced. For example, in [10],
the author derived an upwind type method on triangular meshes. In [7], the authors
studied stabilized FEMs for time-dependent convection-dominated problems, such as
streamline-upwind Petrov-Galerkin method. To stabilize FEMs, adaptive mesh grids
methods have also been introduced for example in [22]. Finally, in [8], a Crank-
Nicholson finite difference scheme with a midpoint upwind finite difference operator
on uniform mesh was derived. The authors proved that this method is second-order
accurate in time and almost second-order accurate in space in a coarse mesh.

In this thesis, we extend the application of the bilinear covolume-upwind finite
volume method (bilinear CUFVM) on rectangular grids introduced in [27] to the
linear parabolic partial differential equations with homogeneous Dirichelet boundary
conditions. This method uses local Peclet’s numbers and the upwind idea to con-
struct nonstandard control volumes and midpoint quadrature to get the discretized
systems. This space disctretization, however, gives us only a semi-discretized system.
Then, in order to get a fully discretization of the problem and thus, a numerical solu-

tion, we will use the Crank-Nicholson scheme to discretize the time variable. It will
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be shown through numerical examples, that this method is second-order accurate in
the L? norm and first-order in the H' norm and stable even for strongly convection-
dominated problems. We will also compare this method to the central and the upwind
finite volume methods.

This thesis is organized as follows: in the next section of this chapter we will
describe the model problem and its variational formulation. In Chapter 2, we will
derive the central and upwind finite volume methods, while the covolume-upwind fi-
nite volume method will be studied in Chapter 3. Convergence and stability of these
methods will be proved through numerical examples in two dimensions in Chapter 4,

followed by conclusions in Chapter 5.

1.2 THE MODEL PROBLEM

Let Q be a bounded domain of R% with piecewise polygonal boundary 92 and set
Qr = Q x (0,T], for some fixed time T > 0. Let consider the parabolic differential
equation

ut—V~(aVu—E>u)—|—ru:f, xeQ, te (0,7T]

u =0, x €00, te (0,T] (1.1)

u = up(x), xeQ,t=0

_)
where a(x,t) > ap > 0 € H'(Qyr) is the diffusion rate, b(x,t) € H'(Qg) is the
transport velocity, r(x,t) > 0 € L®(Qr) is the given reaction rate function, uy €
L?(Q) is the given initial condition function and f(x,t) € L*(Qr) is a given source

function. We assume also that

—
- b

We want to write the variational formulation for the initial-boundary value problem

(1.1). Let v € Hy(£2). Then, multiplying the differential equation by v and integrating
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over {2, we get

/utvdx—/ V-(aVu—ﬁu)vdx—l—/ ruvdx = / fodx
0 0 Q 0

Using integration by parts and recalling that v vanishes on the boundary of €2, the

previous become

/utvdx—l—/ (aVu—ﬁu) 'Vvdx+/ ruvdx = / fudx
Q Q Q Q

Let us define
Au,v) = / (aVu -Vov — (B)u) -Vo + mw) dx
Q

for u, v € Hj(Q2).Then the weak formulation of the problem (1.1) is: Find u = u(-,t) €
H{(Q) (0 <t < T) such that

(u,v) + A(u,v) = (f,v), Yo € Hy(Q), t>0
(1.3)

u(x,0) = up(x) x €
where (+,-) denotes the inner product of Ly(€2). The bilinear form A(u,v) satisfies

the following property
Alu,v) < e[l 1]l v lh Vu,v € Hy(Q)
Moreover, there exists a constant c¢s > 0 such that

Alu,u) = / (a(Va) = (Bu) - Vu+ ra?) dx > ¢ | u [} Vu € HY(Q)

Q

This follows immediately from the assumptions on a, b, from (1.2) and the fact that

(see [11])

- 1 = 9
/Q(bu)-VudX— 2/Q(V b )u“dx

Then, there exists a unique solution to the variational problem (1.3) [4].
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CHAPTER 2

STANDARD FINITE VOLUME METHODS

2.1 THE CONTROL VOLUME

Let consider the two-dimensional case of problem (1.1). In order to derive the cen-
tral and the upwind finite volume methods for the given problem, we first need to
construct the control volume. The notation used in the present work follows that one
used in [27].

Let Q = [z, z,] X [y1, y-]. Let us define the partition of € as
=< < <> <IN, =Ty,

yl:y0<y1<...<yj<...<yNy:yr,

where the grids are uniform and N, and N, are the numbers of grid blocks in the
x and y directions respectively. Let P;; denote the grid point of coordinates (z;,y;)
and Azr; = z; — x4, fori=1,..., N, and Ay; = y; —y;—1, for 5 =1,...,N,. We

define the primary grid €2, for the finite volume approximation as
{Qi,j : Qi,j = [.’L‘i_l,l'i] X [yj—layj]a 7 = ]_, . ;ny ] = ]_, . ,Ny}

We want to construct the dual partition 2} of 2 with respect to the rectangulation
Q. It Py is an interior grid point, we construct its control volume )} ; by connecting

the centers of all its four adjacent cells, as in Figure 2.1. Then the set of the control

volumes or covolumes is

. Ny—1,j=1,...,N,—1}
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P
it
Qi @------ S Qs
! 1
1
P I
-t itd.
Pi1, ¢ . Piy1
! Pi,j 1
! 1
! 1
Qré--—---- ®------ Q2
P 1
1= 5
Pij-1

Figure 2.1 Control volume associated with the interior grid point P ; for uniform
grid.

Let us define

Po = {P;:i=0,...,N, j=0,..., Ny}, (2.1)
P = {P,;,:P;¢00 i=0,...,N,, j=0,...,N,} (2.2)
Pp = Po\P (2.3)

Let us set the trial function space Uy to be the space of piecewise bilinear functions

on the rectangular grid €2

Un = {un € C(Q) : upla, , is a bilinear function for any €2;; € Q,} (2.4)

and the test function space V}, to be the space of piecewise constant function space

over the dual partition €2}

Vh = {Uh € Lz(Q) I Up

q; , = constant for any Q7 ; € Q) and vy, o, = 0if P,; € Pp}

Let {¢;, (i,j) € Pq} be a basis of U, such that ¢;; is equal to 1 at P,; and 0

otherwise and let {1, (7, j) € P} be a basis of V3, where 9, ; are the characteristic
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functions of the covolume 2} ; defined as

L, xe;
Vi j(x) =
0, x€Q/Q;
Then uy, € U, can be written as
un =Y, Uijdi
P; ;ePq

where u; ; = up(P, ;).

Multiplying the differential equation of (1.1) by v, € V},, integrating over € and

*

applying Green’s formula on each (2},

and replacing u with u, € U, we get the

discrete approximation for the problem (1.1): Find ujp = up(-,t) € U, (0 <t < T)

such that
Bh(atuh, Uh) + Ah (uh, ’Uh) = Lh(f, Uh) Yoy, € Vh, t, >0 (2 5)
un(x,0)p, = uo(x)
where
Bu(Oun,vn) = 3 wn(Py) /  Duupdx, (2.6)
Pi,jEP Qi,j
Ah (uhavh) = — Z vh(f)i,j)/ . (aVuh) . 7'L’,jd8
P; ;eP BQiJ
_>
Y wPy) [ (BT i)uds
P; ;€P 0% ;
+ > vh(Pi,j)/ rupdx (2.7)
P; ;eP Q’:fvj
and
Llfoon) = Y on(Py) [ fdx (2.8)
P; ;cP Qi»j

where v; ; is the unit outward normal along €7 ;.
Till now we have got a semi-discrete scheme by discretizing the space variable. In

olution of problem (1.1), we need to discretize also the time
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variable, to obtain a fully-discrete scheme.
Let us denote with At = T'/N; the time step size and let ¢t,, = nAt (n =0,..., Ny+

1). At each time t = ¢, using the difference quotient
R

- (2.9)

5{&2 =
to approximate d;u;, and using Crank-Nicolson scheme, we get that the variational

problem becomes: Find u} € Uj, such that

_ n+1 n n n
Bh(atuﬁ,vh) + Ah (W,’U}J = Lh (f +12+f ,'Uh) Vvh S Vh, n = 1, 2, e

ud|p =
(2.10)

For a given ujy, we have

1
Ap(up™™,vp) + E(“Zﬂ”h) >c|lupt | Vuptt € Uy,

This guarantees the existence and uniqueness of the solution u}™* to (2.10) for a given
uy [12].
Setting v, = 1;; in the expressions (2.6)-(2.8) and using the proposed time dis-

cretization, we get

/ u =i Uiy - / (anﬂvuﬁﬂ)'7i,j+(anvu’ﬁ)'7i7jds
5 At o907, 2
—n+1 n —n n
/ (b - Vi)up™ + (b '7i,j)uhd8
09 2
n+1, n+1 n, n n+1 n
+ / P T e [ T e (2
4 2 Q. 2
Rearranging the terms, we get
At
un+1dX = an—l—lvun-f—l 7 ds
f 3 e @V T
At —yntl " At ntl n
+ 2 Joa: (b - 7i,j)“h+ld5 + 2 Jor " Tluptdx
71'7]')'U/Zd8
(2.12)
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2.2 THE CENTRAL SCHEME

To get the central finite volume scheme (CFVM), we approximate each term of the
equation (2.12) using the second-order accurate midpoint rule. We will consider each

term separately. Let P;; € P be an interior point (Figure 2.1). For the first member,

we have
n+1d ~ o,n+1 P A 2.13
updx = up(By) Area(Q1Q2Q5Q4) (2.13)
QF .
i,j
duntt oupt!
_ (an+1vun+l) ) 7i,jd5 ~ + h Pq, 1 an+1d5 _ h Pz 1. an+1d8
h 8y JT 2 oz +3
BQ;j Q1Q2 Q2Q3
dun Tt oup !
— h P .1 a"tlds+ —L— (P, . a"tlds
oy Lity 530 ox T2 0101
3«4 4«1
ntl o ntl n+l _ ,ntl
_op Mg Ui s u/ o s
ij Q1Q2 Azt Q2Q3
n+l _ ntl n+l _  n+l
_ “m‘z Yi g / " lds + %/ a"tlds  (2.14)
Yi+1 Q3Q4 i QaQ1
—ntl
/ (bn ~7i,j)uz+1ds% — uf;"_ll/ b;‘+1d8+u?_:—;lj/ byt lds
a9y Y2 J01Q2 27 JQ2Qs
wt! N bZ+1ds — u7+11 ) b;”'lds
bits Q3Q4 e Qa1
wt il opntt ul Tt
= — %/ bZ+1ds+wTZ+1J\/ b+ lds
Q1Q2 Q2Q3
n+1 n+1 n+1 n+1
LM 4;%]41 / b+ ds — %/ bitlds  (2.15)
Q3Q4 Qa1
/ it dx ~ uZH(Pm-)/ r"tdx (2.16)
Qr Q1Q2Q3Q4

Similarly, the right hand side becomes

/Q wldx ~ ul(Py) Area(Qi0:Q:Q1) (2.17)

i
oup ouy
/ (a"Vuy) - 7i’jds ~ - Zh (Pi’j_;> / ads + b (Pi+;7j) / a"ds
oy, dy 2 JQ1q: O : Q2Qs

oup oup
+ e/ (qu_;) / ards — 2 (P,—_l,j> / a"ds
dy */ JQsqa O ? Q1Q1

noo_ g, n C— .
o Wy W / s+ i g / o ds
Ay, 0105 Azt Jga,

[T —um. 'LLT-L-—'U/TL, :
L Ui T / ads — i~ i1 a"ds  (2.18)
Ayivi Jgas Az Q101
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BT ulds ~ n brds — ul bd
_ ( . i,j)uh S~ + ui,j—% y S_ui+%,j xS
o9y Q1Q2 Q2Q3

— ul, l/ byds +ul 1 / bhds
R erariie 2 g ¢

u,n._l +u. urt. —|—un+1 .
= oy TRy / bpds — “H L / brds

2 Q1Q2 Q2Q3
u"f—|—u"7+1 un_l’.ﬁ—un"
- %/ byds + #/ bds (2.19)
Q3Qa QaQ1
— rtupdx ~ —up (P )/ rdx (2.20)
Q;, 7 Q1020504

This gives us a discrete system in u(P; ;) for P, ; € P at the time ¢ = ¢,,.4.
The central scheme is second-order convergent and it is stable only for sufficiently
small mesh sizes. Moreover, non-physical numerical oscillations can arise using the

central scheme when solving convection-dominated problems.

2.3 THE UPWIND SCHEME

In the upwind scheme (UFVM), we use the same control volumes and time discretiza-
tion defined in Section 2.1. The diffusion terms, the reaction terms and the first terms
of each member of (2.12) will be discretized in the same way as in the central scheme.

To obtain the discretization of the convection terms, let first define the following

quantities:

/ b+ ds

Q1Q2 Y

/ bn+1 dS
Q2Qs "

/ b+ ds
Q3Q4 Y

/ b ds
Q4Q1

N — 7 N~
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Bl = ( Lo s byds|)
Blo, = % ( L s [ brds| )
Bl = 5 ( L s ][ byds|)
Bl o, = % ( | ase|] brds| )

Then we have

—n+l " n n " .

/ag. (b VP s & = Byl (upt (@) + up Q)
+ Byt Qo) + up ™ (Qs))

+ Bylo,(upt(Qs) + up ™ (Q4))

— Bio, (up™(Qa) +up Q1)) (2:21)

and

B /Eiﬂu*(g)n ' 72;_1)14:(18 s Bngz (UZ(QI) + U“Z(Q2))
— B0, (up(Q2) + up(@s))
B B53Q4 (U;LL(Q3) + UZ(Q4))

+ Bguqu (1 (@) +ui (@) (2.22)

As in the case of the central scheme, we obtain a discrete system in u(P; ;) for
P;; € P at the time ¢t = t,,;1. The upwind scheme is unconditionally stable, but
it is only first-order convergent. However, high order accurate upwind schemes for
convection-dominated problems have been proposed in [13]. A derivation of highly

order accurate generalized upwind schemes on triangular mesh can be found in [12].

11
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CHAPTER 3

BILINEAR COVOLUME-UPWIND FINITE VOLUME METHOD

3.1 THE UPWIND-CONTROL VOLUME

In the upwind scheme, for the discretization we take into account the grid points from
the upwind sides, while in the central scheme we use the average of the point values
from both sides. In a previous work [27], the bilinear covolume-upwind finite volume
method for solving linear elliptic partial differential equations was introduced. In this
method, the upwind idea was applied for the construction of a non-standard control
volume for each grid point. We want extend the application of this method to the
linear parabolic partial differential equation (1.1). Let us assume that the spatial and
time discretizations defined in Section 2.1 hold. Let ﬁ(x) = (bs(x),b,(x))". Let us

define the Heaviside function H as

1 ift>0

where §(-) is the Dirac function. Then, at the time ¢t = ¢,1, on the edge P, ;P11 ;,

we can compute

—n+1
H/ b (1,07d :H/ b+ (x)d
(P - (1,0) ) (PP () ds

to indicate the horizontal upwind direction. Then we define the z-coordinate of the

upwind point :cf:f]* on the edge P; Pty fori=0,...,N, —1,5=0,..., N, and
27

12
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n=20,...,N; as

n+1 * n+1 T )
Tirdy =1 (/]:’i,jpi+1,j K (X)d8> [ AT Hi- aH_%’j)mHl}
n+1 T T
+ (1 - H </Pi,jpi+1,j bl (x)ds)) [(1 - ai+%’j)$i + Oéi_’_%’jxi—i-l} (3.1)

where o i is a local weight factor. Thus, the upwind point on P ; P; 1 ; is the point
27

of coordinates (:1:’.”1 -*, ?JJ>
i+ 3]
To define the local weight factor, let us indicate with Pe], , ; the local Peclet’s
27

number

bx j tn
—  max | (ZIZ, Yi, +1)‘A
z; <x<ziy1 CL(.T, Yj, tn—i—l)

Pe?

61_’_ 547 Lit1

on P; Pt ;. Then we set

1 i x <
i 5 if Pei+%,j <2
Xirlj =
27
_ 1 x
1 P if Pei+%’j > 2
i+5,]

In a similar way, we define the y-coordinate y?ﬁl * of the upwind point on the
7 2

edge P ;P11 as

ntl * n+1 Y . _ Y .
y ’]+2 =H </Pi,jpi,j+1 by (X)d8> [ai’j+%yj + (1 ai’j+%)yj+1:|

n+1 Y . Y .
i (1 - </Pi,jPi,j+1 g (X)d8>> [(1 a ai’j+%)yj + Yigridint (32)
where
1
, B 3 if Pe, 41 S <2
ij+3
1— ﬁyl— if Pe il 1> 2
ij+d b7
and

by, (i, y,t
Pe! | = max 5y(i, 9, n+1)|ij+1
ity Y5 <y<yj+1 a(l“i, Y, tn+1)

Thus, the upwind point on P, ;P ;1 ;P j+1 is the point of coordinates (xz, y"t: *>

Then, to construct the new control volume, in each cell €2; ;, we take the midpoint
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Lntl *
i-1.5+1 itd,+1
n+4+1 *
n+1
QZ"‘I it % Q3 it *
L § ----0-o -~ ISR AT
i—1,j+35 | M3"+1 it s
S P j | 1
_%,j +M'n+1 “MQ
1 1
! y'fplrl 1 " 1
| =5 | ytt *
AR Qrtle---¢--e------ o, i
1—1,9—-5 1
b S BV
z*n,+1 * mn+l *
i—L,j—1 i+t5.i-1

Figure 3.1 Upwind-control volume associated with the interior grid point P ;.

of the upwind points on opposite edges, to obtain the point :le inside the grid cell
Qi,j as

n+1 * n+1 * n+1 * n+1 *
- ( hi T %him Yoy Y )
2V

ij—%
2 ’ 2
After finding the QZ;H’S of the four neighbor grid cells of the grid point P ;, we

connect them to form its control volume Qf’;rl* as shown in Figure 3.1. Then the set
of the nonstandard control volumes

r = {0 =1, N, =1, =1,

N, —1,n=0,...,N, — 1}

forms an upwind dual partition of {2 with respect to the rectangulation €2j,.

3.2 'THE BILINEAR DISCRETIZATION SCHEME

We will find now the bilinear finite volume discretization of the problem (1.1). We
choose the trial space Uy to be the space of the piecewise bilinear functions over the

rectangular grid €, as in (2.4) and let Pg, P and Pp be defined as in (2.1)-(2.3).

14
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Let {¢;;(x)}p, cp, be the set of basis functions of Uy, with

1 x=2P,

i j(x) = v

0 otherwise

Then, any uy € U, can be written as
un(X,t) = Y uijdii(x)
P; j€Pq
where u; ; = up(P; ;).
Let us set the test function space V}, to be the space of piecewise constant function

o 1%
space over the dual partition Q}F

Vi = {vn € La(Q) : Up|gn+1+ = constant for any Q?;rl* € Qp 1™ and vp|gnir- =0if Py ; € Pp}
i , i

and let {¢;;, (i,7) € P} be a basis of V},, where 1; ; are the characteristic functions

of the covolume ijl* defined as

1, x¢€ Q?;rl*
Vij(x) =
0, xeQ/Q"
Multiplying the differential equation of (1.1) by v, € V,, integrating over 2 and
applying Green’s formula on each Q?jl*, replacing u with u, € U, and using the
Crank-Nicolson scheme, we get the discrete approximation for the problem (1.1):

Find u}™" € U, such that

un+1_un un+1+un n+1 n
Bh( Y h"”h)"‘Ah( b— h,%l):Lh(%L’vh) Yup € Vi, n=0,1,...

(3.3)

U’2|PD = Uo

with

n+1 n
U —Uu
By, (hTth, Uh)

P M d 3.4
Z Uh( 17.7) QTLJ.FI* At X? ( . )

P ;cP

n+1v n+1 LAY
(a’ Up, a uh) 7n+ld
B) C Vg 48
Qe

ij

—n+l -
(b Tt (b T g

+ Z vh(Pi’j)/ 5 : ds

n+1*
P; ;€P o
1, n+1 n,n
LR TH IR R
+ Y w(Py) h h dx (3.5)
P ep Qrti 2
i, i,

15

www.manharaa.com



and
n+1 n n+1 n
- -
Ly (%71%) = > Uh(Pi,j)/n_H* (u> dx (3.6)
P, jeP LS 2

where 1%/ is the unit outward normal along Q71" Setting v, = ¢;; in the previous

i’j

expressions, we obtain

/ uftt — P / (a" IV th) . 72’;1 + (a"Vuj) - 7;’;1 ds
Lol oy T 2

ds

—n+1 —n
(b - 7gjl)u;;+l +(b - 7;fjl)u;';
ooyt 2

Tn—l—lun-i-l i n+1 n
/nﬂ* h : T g — /nﬂ* %dx (3.7)
L &

and finally, rearranging the terms, we get

At
/ uitldx — — (a" T Vupthy . 7?;1ds
Q?;rl* 2 89;‘;?1* ’

At —n+l At
+ — (bn . 7?‘?‘1)1;2“(13 + — / Tyt dx

2 Joqrtr 7 2 Jonrtr~

%, K2V
At At —n
= / updx + —/ (@"Vup) - 7?;~rld$ - — (b -7 urds
Qi 2 Joqn+r ’ 2 Joqn+rr 7
i,7 5] K2V}

At At A
- — rtupdx + — udx (3.8)

2 Jopti- 2 Japtrr 2

To find the approximation of each term of the previous equation, we use second-
order accurate midpoint rule. Let us denote with Q7™ Q5 'Q5 Q%™ the covolume

associated with the grid point P, ;, with M{"™', MZ*1 M MP*! the midpoint of

QI QTR QT QT QT respectively and let M™ ! be the center
of the quadrilateral Q7 Q5™ Q5™ Q1 as in Figure 3.1. Then each term of the first

member of the previous equation will be approximated as follows:

n+1 ~ o, n+1 n+1 n+1yn+1yn+1yn+1
[ o (M) Area(Q Q5T QTR (39)
)
—/ (a”"'quZ"’l)-??‘!'ldsz - (Vu2+1(M{‘+1)~7"'E_1 n+1)/ a™tlds
pan+1 N Qg QrigptT
2V}
- (VUZ+1(M;+1)'7RTL-1H 'n,+1) _a"+1ds
Q? Q3 Q;+1Qg+1

1 1 1
- (Vi (gt )-7gt+1Qn+1)/_a"+1ds
3 4 Qn+1Qn+1
3 4

(V“Z+1(M2+1)~7gﬁl(gn+1)/ a"*tlds  (3.10)
4 1 QZ+1QT+1
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—n+1 —ynt1
[Tt ot [ B L s
aqnttr ’

oo Qs
—n+1
+ouptt gty L b UL ds
QyHQy*! L
—n+1
boaronty [ BT s
QriiQrt! QYT QY
—n+1
+ n+1(Mn+1)/—b 771,-7{:11 n+1d8 (3‘11)
ity L
r"+1uz+1dx ~ UZ+1 (Mn—i-l) n+1dx (3‘12)
Q'/_L{l* Q;LJrl n+1Qn+lQn+1

Similarly, the right hand side becomes

/Q o xR (M) Area(Q1H Q3T QBT Q) (3.13)
2%
/mw*(anvﬁ).7zj1ds~ + (Vup (M) 7nn+1 n+1) /Wands
7

2

+ (Vup (M. n+1) 7”n+1 HH)/Q;’“—Q?HandS

+ (VUZ(MgH-l) 7nn+1 a"ds

n+1 ) /—
Qy QuHQrH

+ (Vg (M) - Ve a"ds (3.14)

n+1) /—
Q QZH-lQ;H-l

_>
a /89n+1* ( b ' ’ 7?,;_1)uzd8 ~ = uh(Mln—H) b 771 n+1 n+1d8
- uh(M2n+1) b 7n n+1 n+1 ds

ds
T T n+1 n+1
iyt Q

_>
" 7%11 grerds (3.15)

- riutdx ~ —uf (M) rdx (3.16)
= Q'iH-lQ;Hrl Q.Z&H-lQZJrl
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We still need to evaluate u} ™ (M"™1), u? (M) and ujtH(MPH), up (M),

+1
QU iy, a“h (MY, G (Mt b (MY, for k = 1,2,3,4. Since Myt =

(Z,9) must fall in one of the four neighbor cells of F,;, say P;sP; 5P 5 Prs

we can use the bilinear interpolation properties to get the following formulas for

k=1,2,34:
up (M) = (L= ) (L= p)ud ™ T + (= yp)ud ) + (=) pu s
(Mn+1) = (1 - 795)(1 - ’Yy)u?_lyj_l + ’Yw’)’yu?j + 7w(1 - 7y)u?,j_1 + (1 - %c)fyyug_lj

aun—i-l
+1 +1 +1 +1 +1
or (My™) = Az; (’Yy“% +(1- 'Yy)u?,}'—l - ’qu?—lj —(1- W’y)u?—lj—l)

aun+1 1 1 1 1 1 1
oy (M) = (%un+ + (1= )uy; = i, — (1= %)“?jl,ﬁ‘—l)

5’% n+1 1

Ox e M) = Ax;_, <’Vyu%»3 + =)y Uij—1 7 Wi (1 ’Vy)uz—ly—1>
oul 1 n

—h (’YmuM + (1 — e )i i-1; — a5 (1 'Yz)uz_1j_1)

n+1\ __
Ay (M) = Ay; "

where

Then we get a discrete system in u(P; ;) for P, ; € P at the time t = ¢,,44.

As for the steady-state equation (see [27]), this method is second-order accurate
and it is stable also for convection-dominated problems. We notice that if the Peclet’s
numbers of the given parabolic problem are smaller than or equal to 2, then the
control volume of the bilinear scheme will reduce to the covolume defined for the

central scheme and the bilinear discretization will coincide with the central scheme.
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, we present some numerical examples to demonstrate the conver-
gence and stability of the bilinear covolume-upwind finite volume method applied
to parabolic partial differential equations. We will compare this method with the
central and the upwind schemes, showing that the non-physical oscillations that may
arise when solving convection dominated problems with the central scheme, disap-
pear when using the bilinear CUFVM. Moreover, we will show also that the bilinear
CUFVM is second-order in the L? norm and first-order in the H' norm.

Let us define the error e} as
ey = u(tn) — uj,
for n = 0,1, .. and the measures associated with the mesh €2,

I 'er, [l = max |ej] (4.1)

1
2

ler = (3 [ IeZ|2dx) (42
ij 7S

len g = Z/Q . |V€Z|2dx) (4.3)

NI

len

Lo, = | .| Vey (xi_%,yj_%> |2Amiij) (4.4)

4]
For the following examples, we choose the time interval [0,7] to be the interval
[0,1] and ©Q = [0, 1] x [0, 1] and we solve the model problem (1.1) using the central,

the upwind and the bilinear covolume-upwind schemes respectively. We computed
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Figure 4.1 Plot of the exact solution of Example 4.1

the errors at the time ¢ = ¢y, using the measures defined above and we found also
the condition numbers of the discretized system to prove stability of the discretized
systems that results from the bilinear CUFVM. For every example, we used time
discretization with sizes N; = 10, 20, 40, 80 and uniform spatial grids with sizes N, x

N, =10 x 10, 20 x 20, 40 x 40 and 80 x 80.

Example 4.1. In this example, the exact solution is chosen to be the function
u(z,y,t) =14 te"

This is a smooth function and its graph is displayed on Figure 4.1. The convection
term is defined as b = (2,1) and the reaction coefficient is set equal to r(z,y,t) = 1.
The diffusion coefficient a is set equal to 1, 1072 and 10~® respectively. Then the
condition (1.2) is satisfied since V - B = 0. The source function f is determined by

the choice of u and equation (1.1).

The results for this example are shown on Tables 4.1, 4.2 and 4.3 for the CFVM,

the UFVM and the bilinear CUFVM respectively. From the tables, we can observe
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Table 4.1 Numerical results for Example 4.1 using the CFVM

a Nt Nw X Ny H € ||L<x> CR || (7 ||L2 CR || (& ||H1 CR || €n |11,94 CR
10 | 10 x 10 | 1.510e-2 — 5.500e-3 — 1.304e-1 — 7.600e-3 —
1 20 | 20x 20 3.900e-3 | 1.95 | 1.400e-3 | 1.97 | 6.520e-2 | 1.00 | 1.900e-3 | 2.00
40 40 x 40 1.000e-3 | 1.96 | 3.449e-4 | 2.02 | 3.260e-2 | 1.00 | 4.771e-4 1.99
80 | 80 x 80 2.528e-4 | 1.98 | 8.625e-4 | 2.00 | 1.630e-2 | 1.00 | 1.193e-4 | 1.99
10 | 10 x 10 | 1.490e-2 — 5.300e-3 — 1.306e-1 — 9.600e-3 —
10-3 20 | 20x 20 3.900e-3 | 1.93 | 1.300e-3 | 2.03 | 6.530e-2 | 1.00 | 3.112e-3 | 1.63
40 | 40 x 40 9.826e-4 | 1.99 | 3.303e-4 | 1.98 | 3.260e-2 | 1.00 | 1.100e-3 | 1.49
80 | 80x80 | 2.483e-4 | 1.98 | 8.255e-5 | 2.00 | 1.630e-2 | 1.00 | 3.213e-4 | 1.77
10 | 10 x 10 1.490e-2 — 5.320e-3 - 1.306e-1 - 9.901e-3 -
10-8 20 | 20 x 20 3.900e-3 | 1.93 | 1.301e-3 | 2.03 | 6.530e-2 | 1.00 | 3.702e-3 | 1.42
40 | 40 x 40 9.805e-4 | 1.99 | 3.316e-4 | 1.97 | 3.260e-2 | 1.00 | 1.610e-3 | 1.21
80 | 80x80 | 2.472e-4 | 1.99 | 8.287e-5 | 2.00 | 1.630e-2 | 1.00 | 7.884e-4 | 1.02

that, for every choice of a, the bilinear CUFVM is second-order in || e} ||z~ and
|| e |12, while it is first-order convergent in |e}|g1, as the central scheme. Using the
UFVM, instead, we get the same orders of convergence only in the case a = 1, while
it becomes first-order convergent in || €} ||~ and || e} |12 and half-order convergent
in |e} | for the other two choices of a.

The results show also that the values for || e} ||z~ and || €} ||z obtained with the
bilinear CUFVM are slightly smaller than the corresponding values obtained using
the central scheme and very small if compared to those found using the UFVM.
Moreover, we can notice that the convergence rates for |e}]; o, are equal to 2 for
the case a = 1, which indicates the superconvergence of the bilinear CUFVM, and
they became equal to 1.5 for the case a = 1073 and 10~®. The convergence rates for
e} |1.a, are equal to 2 for a = 1 also for the central and the upwind schemes, but they
degenerate to 1 and 0.5 respectively for the convection-dominate problems.

Condition numbers of the discrete systems obtained using the bilinear CUFVM
are shown in Table 4.3 and their plot is given in Figure 4.2. We notice that they
increase by a rate of almost 4.5 for the case a = 1, between 2 and 4 for the case
a = 1072 and of roughly 8 for the strongly convection-dominated case a = 1075,
Moreover, we observe that condition numbers increase as the diffusion coefficient a

becomes smaller (see Figure 4.2).
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Figure 4.2 Plot of the condition numbers of the discrete systems obtained using
the bilinear CUFVM in Example 4.1

Table 4.2  Numerical results for Example 4.1 using the UFVM

a Ny | Nz x Ny || en ||Loo CR || en ||L2 CR | en |H1 CR || en ||1,Qh CR
10 10 x 10 1.510e-2 — 5.500e-3 — 1.304e-1 - 7.600e-3 -
1 20 20 x 20 3.900e-3 | 1.95 | 1.400e-3 | 1.97 | 6.520e-2 | 1.00 1.900e-3 2.00
40 40 x 40 1.000e-3 | 1.96 | 3.449e-4 | 2.02 | 3.260e-2 | 1.00 4.771e-4 1.99
80 80 x 80 2.528e-4 | 1.98 | 8.625e-4 | 2.00 | 1.630e-2 | 1.00 1.193e-4 1.99
10 10 x 10 3.549e-1 — 1.231e-1 — 1.025 — 1.004 —
10-3 20 20 x 20 2.043e-1 | 0.79 | 7.150e-2 | 0.78 | 7.972e-1 | 0.36 7.896e-1 0.35
40 40 x 40 1.066e-1 | 0.94 | 3.741e-2 | 0.93 | 5.761le-1 | 0.47 5.734e-1 0.46
80 80 x 80 5.170e-2 1.04 | 1.810e-2 | 1.05 | 3.906e-1 | 0.56 3.896e-1 0.56
10 10 x 10 3.604e-1 — 1.251e-1 — 1.041 — 1.019 —
10-% 20 20 x 20 2.108e-1 | 0.77 | 7.380e-2 | 0.76 | 8.224e-1 | 0.34 8.148e-1 0.32
40 40 x 40 1.137e-1 | 0.89 | 3.990e-2 | 0.89 | 6.142e-1 | 0.42 6.115e-1 0.41
80 80 x 80 5.910e-2 | 0.94 | 2.071e-2 | 0.95 | 4.463e-1 | 0.46 4.453e-1 0.46

Example 4.2. In this example, the exact solution is defined as

w(z,y, t) = 10e @05 +(y=0.5)*+(t-05)7]

The convection term is set to be equal to ﬁ = (2 — 2%yt, 1 + xy?t) and the reaction
coefficient is again set equal to 7(z,y,t) = 1. The diffusion coefficient a is again equal
to 1, 107 and 1078 respectively. Then the condition (1.2) is satisfied since also for
this example we have V - E) = 0. The source function f is determined by the choice

of u and equation (1.1).

For this example, the exact solution is plotted in Figure 4.3 and the value of the
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Table 4.3 Numerical results for Example 4.1 using bilinear CUFVM

a | Ne | NoxNy | [lenllee | CR | [lenllp2 | OR | flenllgr | CR | flenllio, | CR | Cond

10 [ 10x10 | 1.510e2 | — | 5.500e-3 | — | 1.304e-1 | — 7.600e-3 — | 6.02e+1
20 | 20x20 | 3.900e-3 | 1.95 | 1.400e-3 | 1.97 | 6.520e-2 | 1.00 | 1.900e-3 | 2.00 | 3.43e+2
40 | 40x 40 | 1.000e-3 | 1.96 | 3.449¢-4 | 2.02 | 3.260e-2 | 1.00 | 4.77le-4 | 1.99 | 1.53e+3
80 | 80x80 | 2.528e-4 | 1.98 | 8.625e-4 | 2.00 | 1.630e-2 | 1.00 | 1.193e-4 | 1.99 | 6.36e+3
10 [ 10x10 | 1.440e2 | — | 3.80le3 | — | 1.318e1 | — 2.090e-2 — | 7-25e+2
20 | 20x20 | 3.702e-3 | 1.96 | 8.803e-4 | 2.11 | 6.560e-2 | 1.0 | 7.50le-3 | 1.48 | 3.4le+3

-3
10 40 40 x 40 9.493e-4 1.96 | 2.108e-4 | 2.06 3.270e-2 1.00 2.701e-3 1.47 | 8.17e+3
80 80 x 80 2.395e-4 1.99 | 5.183e-5 | 2.02 1.630e-2 1.00 9.326e-4 1.53 | 1.73e+4
10 10 x 10 1.440e-2 — 3.810e-3 — 1.318e-1 — 2.090e-2 — 8.32e+2
10-8 20 20 x 20 3.702e-3 1.96 | 8.793e-4 | 2.11 6.560e-2 1.01 7.510e-3 1.48 | 7.62e+3

40 40 x 40 9.490e-4 1.96 | 2.10le-4 | 2.06 | 3.270e-2 1.00 2.702e-3 1.47 | 6.12e+4
80 80 x 80 2.393e-4 1.99 | 5.124e-5 | 2.03 | 1.631e-2 1.00 9.503e-4 1.51 | 5.0le+5

0 o

Figure 4.3 Plot of the exact solution of Example 4.2

errors and the convergence rates for the central, upwind and bilinear covolume-upwind
schemes are shown in Tables 4.4, 4.5, 4.6 respectively. We notice similar results for
the convergence rates to those of the previous example. In this example, we can see
that the values of the error for every measure obtained with the bilinear CUFVM
are much smaller than the corresponding ones resulting from the application of the
central and the upwind schemes. In this example, condition numbers for the discrete
systems produced by the bilinear CUFVM are shown in Table 4.6 and their plot can
be found in Figure 4.4. Here, condition numbers for all the choices of a are similar

or slightly larger than those of Example 4.1.
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Figure 4.4 Plot of the condition numbers of the discrete systems obtained using
the bilinear CUFVM in Example 4.2

Table 4.4 Numerical results for Example 4.2 using the CFVM

a Nt Nw X Ny H €p ||L<>° CR || (7 ||L2 CR H €p ||H1 CR || €n |11, CR
10 | 10 x 10 3.580e-2 — 9.903e-3 - 4.936e-1 - 3.040e-2 -
1 20 | 20 x 20 9.210e-2 | 1.96 | 2.500e-3 | 1.98 | 2.475e-1 | 0.99 | 7.602e-3 | 2.00
40 | 40 x 40 2.303e-3 | 2.00 | 6.188e-4 | 2.01 | 1.237e-1 | 0.99 | 1.901e-3 | 2.00
80 | 80 x80 | 5.743e-4 | 2.00 | 1.547e-4 | 2.00 | 6.190e-2 | 0.99 | 4.790e-4 | 1.99
10 | 10 x 10 2.778e-1 - 7.740e-2 — 1.355e+0 - 9.788e-1 —
10-3 20 20 x 20 7.370e-2 | 1.91 | 1.810e-2 | 2.10 | 4.804e-1 | 1.49 3.711e-1 1.40
40 | 40 x 40 1.671e-2 | 2.14 | 4.401e-3 | 2.04 | 1.839e-1 | 1.38 | 1.347e-1 1.46
80 | 80 x80 | 3.920e-3 | 2.10 | 1.101e-3 | 2.00 | 7.35e-2 1.32 | 3.960e-2 | 1.77
10 10 x 10 2.853e-1 — 8.100e-2 — 1.628e+-0 — 1.149e+0 —
10-8 20 | 20 x 20 8.020e-2 | 1.83 | 1.990e-2 | 2.02 | 8.036e-1 | 1.02 | 5.788e-1 | 0.99
40 | 40 x 40 2.020e-2 | 1.99 | 5.003e-3 | 1.99 | 4.000e-1 | 1.01 | 2.882e-1 1.01
80 | 80 x 80 5.101e-3 | 1.98 | 1.201e-3 | 2.06 | 1.997e-1 | 1.00 | 1.438e-1 1.00

Example 4.3. In this example, the exact solution is chosen to be the function

t
1) =
u(z, y,1) 1 4 —100(y/2%+y2-08)

The convection and the reaction terms are the same of those of the previous example.

Again, the diffusion coefficient a is set equal to 1, 1072 and 1078, The source function

f is determined by the choice of u and equation (1.1).

The exact solution for this example is shown in Figure 4.5. The graph shows

that the function is a smooth function, but its values change sharply across the circle
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Figure 4.5 Plot of the exact solution of Example 4.3
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Figure 4.6 Plot of the condition numbers of the discrete systems obtained using
the bilinear CUFVM in Example 4.3
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Table 4.5 Numerical results for Example 4.2 using the UFVM

a Nt Nw X Ny H €p ||Loo CR || (& ||L2 CR H €p ||H1 CR || €n |11,94 CR
10 | 10 x 10 3.580e-2 — 9.903e-3 - 4.936e-1 — 3.040e-2 -
1 20 | 20x 20 9.210e-2 | 1.96 | 2.500e-3 | 1.98 | 2.475e-1 | 0.99 | 7.602e-3 | 2.00
40 | 40 x 40 2.303e-3 | 2.00 | 6.188e-4 | 2.01 | 1.237e-1 | 0.99 | 1.901e-3 | 2.00
80 | 80 x 80 5.743e-4 | 2.00 | 1.547e-4 | 2.00 | 6.190e-2 | 0.99 | 4.790e-4 | 1.99
10 | 10 x 10 5.421e-1 — 1.314e-1 = 1.545e4-0 - 1.427e+0 -
10-3 20 | 20x 20 3.980e-1 | 0.40 | 9.700e-2 | 0.44 | 1.366e+0 | 0.18 | 1.329e+0 | 0.10
40 | 40 x 40 2.372e-1 | 0.75 | 5.810e-2 | 0.74 | 1.070e+0 | 0.35 | 1.058e+0 | 0.33
80 | 80x80 | 1.237e-1 | 0.94 | 3.041e-2 | 0.93 | 7.620e-1 | 0.49 | 7.576e-1 | 0.48
10 | 10 x 10 5.503e-1 — 1.334e-1 — 1.566e+-0 - 1.448e+0 -
10-8 20 20 x 20 4.098e-1 | 0.42 | 1.000e-1 | 0.41 | 1.406e+0 | 0.15 | 1.369e+40 | 0.06
40 | 40 x 40 2.516e-1 | 0.70 | 6.180e-2 | 0.69 | 1.135e+0 | 0.31 | 1.123e+0 | 0.28
80 | 80x80 | 1.398e-1 | 0.85 | 3.440e-2 | 0.84 | 8.617e-1 | 0.40 | 8.574e-1 | 0.39

Table 4.6 Numerical results for Example 4.2 using bilinear CUFVM

@ [ Ny [ Nax Ny [Tenllom [ CR [ Nenllz [ CR [ enllmr | CR [ Tenllio, | CR | Cond
10 | 10x10 | 358002 | — | 9.903¢3 | — | 4936e-1 | — | 3.04002 | — | 6.8lctl
20 | 20 x 20 | 9.210e-2 | 1.96 | 2.500e3 | 1.98 | 2.475e-1 | 0.99 | 7.602e-3 | 2.00 | 3.43¢+2
10 | 40 x40 | 2.303¢-3 | 2.00 | 6.188¢-4 | 2.01 | 1.237e-1 | 0.99 | 1.901e-3 | 2.00 | 1.53¢+3
80 | 80x80 | 5.743c-4 | 2.00 | 1.547c-4 | 2.00 | 6.190e-2 | 0.99 | 4.790e-4 | 1.99 | 6.36c+3
10 10 x 10 6.370e-2 - 1.850e-2 — 5.173e-1 — 1.587e-1 — 7.59e+2
20 | 20x 20 | 1.790c-2 | 1.83 | 5.1000-3 | 1.86 | 2.5350-1 | 1.03 | 5.600c-2 | 1.48 | 3.38¢+3

-3
10 40 40 x 40 4.701e-3 1.93 1.404e-3 1.86 1.253e-1 1.02 2.000e-2 1.51 9.06e+3
80 80 x 80 1.200e-3 1.97 | 3.467e-4 | 2.01 6.220e-2 1.01 7.100e-3 1.49 | 1.94e+4
10 10 x 10 6.450e-2 - 1.860e-2 — 5.177e-1 — 1.598e-1 — 9.74e+2
10-8 20 20 x 20 1.800e-2 1.84 5.200e-3 1.84 2.536e-1 1.03 5.730e-2 1.48 | 8.19e+3

40 40 x 40 4.701e-3 1.93 | 1.404e-3 | 1.89 1.253e-1 1.02 2.010e-2 1.51 | 6.83e+4
80 80 x 80 1.200e-3 1.97 | 3.474e-4 | 2.01 6.230e-2 1.01 7.100e-3 1.50 | 4.86e+5

22 + y?* = 0.82. The error measures and the convergence rates for the three methods
are reported in Tables 4.7, 4.8, 4.9. We notice that the convergence rates for the
three methods are smaller than those of the previous examples, except when the
grids become fine enough. We can explain this by the fact that it is difficult to catch
the variations of the chosen exact solution function if the mesh sizes are not small
enough. The upwind scheme shows more stability than the central scheme, but it
is only first-order convergent. Again, the errors given by the bilinear CUFVM are
smaller that those of the other two methods and it is still second-order convergent
for the convection-dominates problems. Condition numbers for the disctrete systems
obtained with the biliear CUFVM for this example are similar to those of the previous

Example 4.2 and their plot is shown in Figure 4.6.
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Table 4.7 Numerical results for Example 4.3 using the CFVM

a Nt NI X Ny || €h ||Loc CR || €h HL2 CR H €h HHl CR H €h HLQh CR
10 10 x 10 4.107e-1 — 9.890e-2 - 3.424e+0 — 2.824e+0 —
1 20 20 x 20 2.365e-1 | 0.79 | 5.240e-2 | 0.92 | 2.320e+0 | 0.56 1.351e+40 1.06
40 40 x 40 1.477e-1 | 0.68 | 4.210e-2 | 0.32 | 1.283e+0 | 0.85 5.488e-1 1.30
80 80 x 80 1.104e-1 | 0.42 | 4.140e-2 | 0.02 6.752e-1 0.92 2.585e-1 1.09
10 10 x 10 8.285e-1 — 1.906e-1 — 6.615e-1 — 5.258e+-0 —
10-3 20 20 x 20 5.350e-1 | 0.63 | 9.030e-2 | 1.08 | 6.058e+0 | 0.13 5.129e+-0 0.03
40 40 x 40 1.693e-1 1.66 | 1.520e-2 | 2.57 | 2.231e+0 | 1.44 1.676e+0 1.61
80 80 x 80 2.530e-2 | 2.74 | 2.001e-3 | 2.93 | 6.726e-1 1.73 1.821e-1 3.20
10 10 x 10 8.563e-1 — 2.117e-1 — 7.128e+0 — 5.699e4-0 —
108 20 20 x 20 7.005e-1 | 0.29 | 1.230e-1 | 0.78 | 7.675e4+0 | -0.11 | 6.659e+40 | -0.22
40 40 x 40 1.791e-1 1.97 | 2.880e-2 | 2.09 | 3.611e+0 | 1.09 3.149e+-0 1.08
80 80 x 80 3.200e-2 | 2.48 | 2.801e-3 | 3.36 | 7.488e-1 2.27 3.663e-1 3.10

Table 4.8 Numerical results for Example 4.3 using the UFVM

a Nt Nz X Ny H €h ||Loo CR || €h ||L2 CR H €p ||H1 CR || €n |11, CR
10 | 10 x 10 | 4.107e-1 — 9.890e-2 — 3.424e+-0 — 2.824e+-0 —
1 20 | 20x20 | 2.365e-1 | 0.79 | 5.240e-2 | 0.92 | 2.320e40 | 0.56 | 1.351e40 | 1.06
40 | 40 x40 | 1.477e-1 | 0.68 | 4.210e-2 | 0.32 | 1.283e+0 | 0.85 | 5.488e-1 | 1.30
80 | 80 x80 | 1.104e-1 | 0.42 | 4.140e-2 | 0.02 | 6.752e-1 | 0.92 | 2.585e-1 | 1.09
10 | 10 x 10 | 5.501e-1 — 1.058e-1 — 3.633e+0 — 3.237e+0 —
10-3 20 | 20x20 | 3.740e-1 | 0.56 | 5.880e-2 | 0.85 | 2.748e+0 | 0.40 | 2.123e+0 | 0.61
40 | 40 x40 | 2.073e-1 | 0.85 | 2.850e-2 | 1.04 | 1.652e+4-0 | 0.73 | 1.252e+40 | 0.76
80 | 80x80 | 9.980e-2 | 1.05 | 1.330e-2 | 1.09 | 8.555e-1 | 0.95 | 6.014e-1 | 1.06
10 | 10 x 10 | 5.532¢-1 — 1.063e-1 — 3.640e+-0 — 3.245e+0 —
10-8 20 | 20x20 | 3.831e-1 | 0.53 | 5.990e-2 | 0.86 | 2.771le40 | 0.39 | 2.151e4+0 | 0.59
40 | 40 x40 | 2.164e-1 | 0.82 | 2.990e-2 | 1.00 | 1.693e+0 | 0.71 | 1.307e40 | 0.72
80 | 80x80 | 1.110e-1 | 0.96 | 1.490e-2 | 1.00 | 9.070e-1 | 0.90 | 6.733e-1 | 0.96

Table 4.9 Numerical results for Example 4.3 using bilinear CUFVM

@« [ Ny [ Nax Ny, [ Tenllom [ CR [ Nenllzz | CR [ Nenllzs | CR [ Nenllia, | CR | Cond
10 10 x 10 4.107e-1 - 9.890e-2 — 3.424e+0 - 2.824e+0 - 6.81e+1
20 20 x 20 2.365e-1 0.79 5.240e-2 0.92 | 2.320e+0 | 0.56 1.351e40 1.06 | 3.43e+2
40 40 x 40 1.477e-1 0.68 4.210e-2 0.32 1.283e+-0 0.85 5.488e-1 1.30 1.53e+3
80 80 x 80 1.104e-1 0.42 4.140e-2 0.02 6.752e-1 0.92 2.585e-1 1.09 | 6.36e+3
10 10 x 10 4.737e-1 — 1.143e-1 — 4.601e+0 — 2.990e+0 — 7.17e42
20 20 x 20 2.066e-1 1.19 4.190e-2 1.45 3.036e+0 0.56 1.698e+-0 0.82 3.25e+3

-3
10 40 40 x 40 5.950e-2 1.79 | 8.601e-3 | 2.28 | 1.306e40 | 1.22 4.211e-1 2.01 | 9.17e+3
80 80 x 80 1.550e-2 1.94 2.100e-3 2.03 6.332e-1 1.04 1.024e-1 2.04 | 1.19e+4
10 10 x 10 5.188e-1 — 1.192e-1 — 4.774e+0 — 3.066e+0 — 9.39e+-2
10-8 20 20 x 20 2.223e-1 1.22 4.710e-2 1.34 | 3.428e40 | 0.48 1.948e+-0 0.65 | 7.74e+3

40 40 x 40 5.940e-2 1.90 | 9.702e-3 | 2.26 | 1.517e+0 | 1.18 5.298e-1 1.88 | 6.89e+4
80 80 x 80 1.540e-2 1.95 | 2.100e-3 | 2.21 6.333e-1 1.26 1.024e-1 2.37 | 5.49e+45
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CHAPTER 5

CONCLUSIONS

We studied the bilinear covolume upwind finite volume method for the solution of lin-
ear parabolic partial differential equations with pure Dirichelet boundary conditions.
We also compared this method with the central and the upwind finite volume meth-
ods, using numerical examples and we numerically showed the stability and better
convergence of the bilinear CUFVM. However, the rigorous analysis of the stability

and the error estimate of the bilinear CUFVM has to be investigated.
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